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EFFECT OF VISCOSITY ON MEMBRANE FLUXES IN
CROSS-FLOW ULTRAFILTRATION

Shamsuddin Ilias , Keith A. Schimmel, and Gervas E.J.M. Assey
Department of Chemical Engineering
North Carolina A&T State University
Greensboro, NC 27407

ABSTRACT

For practical applications of ultrafiltration (UF), an estimation of membrane
fluxes under various operational conditions is very important. This study analyzed
concentration polarization (CP) as a coupled transport problem with
concentration-dependent solute viscosity. Besides the effects of variable viscosity,
the model includes the effects of solute osmotic pressure, solute rejection at the
membrane surface, and the axial pressure drop. This provides a fundamental
understanding of the effects of various operating parameters on concentration
polarization and transmembrane flux. A finite-difference solution of the transport
equations is presented to model the concentration polarization in a thin-channel
UF system. Simulation results for ultrafiltration of Dextran T-70 show that
concentration-dependent solute viscosity adversely affects the transmembrane flux
and needs to be carefully considered in modeling concentration polarization in
membrane filtration.

INTRODUCTION

Ultrafiltration has been an industrial process for over two decades. With the
advances in asymmetric membranes and improved engineering designs of UF
modules, in many industrial applications UF systems are favored over other

conventional separation processes due to their low energy requirement. However,
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the flux decline due to ’concentration polarization’ and membrane ’fouling’ in
ultrafiltration processes still remains a major concern in many applications (1).
Concentration polarization is the buildup of solutes close to or on the permeable
membrane surface due to convective-diffusive transport in the boundary layer. It
results in an increase in both resistance to the solvent transport and the local
osmotic pressure, which reduces the membrane flux. The operating parameters
that usually affect the concentration polarization are velocity, pressure,
temperature, and feed concentrations. The optimum operation of UF systems is
largely dependent on the management of concentration polarization (2,3). There
is a growing need to accurately predict the performance of UF systems for a
given operating condition and, if possible, to find ways and means to control the
adverse effects of concentration polarization.

The problem of concentration polarization in reverse osmosis and
ultrafiltration has been studied theoretically and experimentally by various
investigators (4-13). To analyze the problem of concentration polarization, one
must understand the transport phenomena at the membrane-solute interface. In
modeling cross-flow membrane filtration, usually a thin-channel or tubular
membrane module is considered as a model element. In most cases, the model
development starts with the decoupling of the momentum equation from the solute
continuity equation. The transport equations are usually coupled by the
concentration-dependent wall flux condition and solute concentration gradient at
the permeable wall. A review of the analytical and numerical works on
concentration polarization in cross-flow ultrafiltration and reverse osmosis reveals
that the transport equations have been decoupled and simplified by assuming one
or more of the following: (a) the wall permeation velocity is assumed constant
or piece-wise constant along the axial length; (b) the fluid flow field is
approximated by some prescribed functions or by a reduced form of the
momentum equation (usually some type of perturbation solution); (c¢) the wall
velocity may depend on osmotic pressure but axial pressure drop is neglected or
an approximate pressure drop is used without solving the momentum equation;

and (d) the fluid transport properties are assumed constant.
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The modeling efforts were essentially based on the decoupling of the
transport equations and some major simplifications of wall permeation boundary
conditions and did not account for the concentration-dependent viscosity and
diffusivity of the solutions in the model development. However, a rigorous
concentration polarization model would require solution of coupled transport
equations with wall permeation conditions that would depend on transmembrane
pressure drop and solute concentration at the membrane interface. Gill, et al.,
(14) and Bhattacharyya, et al., (15) considered the effect of viscosity and
diffusivity in modeling concentration polarization but used simplified flow models
that neglected the axial variation of wall permeation velocity and axial pressure
drop. Recently, Ilias & Govind (16) studied the concentration polarization in
ultrafiltration as a coupled transport problem using constant solute viscosity and
diffusivity. In this paper, a new concentration polarization model is presented as
a coupled transport problem with concentration-dependent solute viscosity. This
analysis will provide a detailed understanding of the role of solute viscosity in the

concentration boundary layer and how it relates to transmembrane flux.

MATHEMATICAL FORMULATION

To model the concentration polarization in a thin-channel ultrafiltration (UF)
membrane system, it is adequate to use parabolic-type transport equations instead
of elliptic equations by using axisymmetric and boundary-layer-type
approximations. Thus, for steady flow in a thin-channel UF membrane module,

the appropriate governing equations in dimensionless form are given by:
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The wall Reynolds number, Re,,, and Peclet number, Pe,,, are based on
initial wall permeation velocity, v,,, and half-channel height, h, of the UF
membrane module. The last term in the momentum equation, Eq. 2, is the
contribution of viscous transport. The concentration-dependent viscosity is
included in the viscous transport term. The appropriate boundary conditions for

the above system of equations are:
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The boundary conditions, Eq. 4, specify the inlet flow and concentration
profiles. The inlet velocity profile may be either uniform (plug flow) or parabolic
(Poiseuille flow). The concentration profile of the feed at the inlet is assumed to
be uniform. The conditions at the membrane walls for the momentum and solute
continuity equations are given by Eq. 5. No slip condition is assumed at the
membrane surface. The momentum equation is coupled with the solute continuity
equation by the wall flux and solute mass balance of the convective-diffusive
transport at the membrane surface with solute rejection coefficient, . The local
wall flux is determined by the axial transmembrane pressure drop, concentration-
dependent local osmotic pressure drop across the membrane, and the effective
membrane resistance. Symmetry at the centerline for axisymmetric flow and

solute transport is reflected in Eq. 6.

METHOD OF SOLUTION

No analytical solution is known for the system of equations, Eqgs. 1-3,

subject to boundary conditions, Egs. 4-6. The system of equations is solved by
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a finite-difference method implicit in Y. A system of grid lines running in X- and
Y-directions (i.e., i and j lines) is imposed on the solution domain. The axial
grids are numbered from [ to m, i.e., i=1 being the inlet boundary (X=0), while
i=m is the last axial grid (X=X,,,) of the solution domain. Similarly, transverse
grids are numbered from 1 to n, with j=1 being the centerline (Y =0), while j=n
is the membrane wall. The discretization schemes of the governing equations and
boundary conditions are similar to that described elsewhere (16). For brevity, the

finite-difference approximations of Eqgs. 1-3 are given here.

" AY,
Vin = _1-2 m(ux‘j Uiy * Uy - Uy ™
AU, + BU, + DU, - E for 2 <j<n-1 @)
FC,, +GC,+HC, =1 for 2<j<n-1 9

where the coefficients in Eqs. 8 and 9 are given as:
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The derivative boundary conditions at the membrane surface for solute
concentration are approximated by a three-point backward-difference formula. At
the axis of symmetry, the derivative boundary conditions for fluid flow and solute
continuity are given by a three-point forward-difference formula. The finite-
difference approximation of the derivative boundary conditions, Egs. 5 and 6, is

given as:
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The grid spacings used in the axial (m-line) and transverse (n-line) directions
were established by numerical experimentation. The axial grid spacings were very
fine at the channel inlet section and gradually increased along the length of the
solution domain. The smallest spacing used was AX=1.0x10"* and increased
along the X-direction by a factor of 1.25. When AX reached about 1.0x 103,
uniform spacing was used for the remaining axial section. In the transverse
direction near the membrane wall, a grid spacing of AY =1.0x10* was used and
the spacings were increased in the transverse direction towards the centerline
(half-channel height) by a factor of 1.1. When AY reached about 0.04, uniform
spacing was used for the remaining transverse length. An iterative procedure
was developed to solve the discretized governing equations, Eqs. 7-9, with the
necessary boundary conditions. The basic solution procedure is similar to that
described elsewhere (16). In the numerical solution, the convergence criteria for
the fluid flow and concentration fields were set at |V, - V,,| < 10®and |C,, -
C,| < 10% respectively. No numerical instabilities were encountered in any of

the simulation runs.

RESULTS AND DISCUSSION

The important variables that affect the performance of membrane filtration
are feed flow rates, feed concentration, operating pressure, solute viscosity and
diffusivity, and osmotic pressure. In this work, the effect of solute concentration
on diffusivity is neglected. It has been argued that the variation of solute
diffusivity with concentration is much smaller than that of viscosity (14). Thus,
the assumption of constant solute diffusivity does not seem to affect the qualitative
results of the effect of variable viscosity in membrane filtration. In this paper, we

have made an attempt to describe the concentration polarization in thin-channel
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ultrafiltration as a coupled convective-diffusive transport problem and presented
a finite-difference solution of the model equations.

Table 1 provides a summary of membrane module dimensions and input data
used in this study. The viscosity and osmotic pressure functions used for Dextran
T-70 are those reported in the works of Clifton, et al., (17) and Ogston & Preston
(18), respectively. The inlet velocity profile was assumed to be parabolic. To
compare the effects of variable viscosity and constant viscosity on cross-flow
ultrafiltration, parametric studies were performed for a wide range of operating
conditions.

Figure 1 is a plot of dimensionless wall perimeation velocity, V,, = v/v,,,
against distance downstream, x, with feed solute concentration as a parameter.
The feed solute concentrations ranged from 0.1 wt % to 5.0 wt %. With a feed
velocity of 1 m/s, the variation of wall permeation velocity with axial distance is
shown for three initial wall permeation velocities, 10° m/s, 10° m/s, and 10%
m/s, for the case of constant viscosity. In Figure 2, the same plots are given for
the case of variable viscosity. A wide range of initial wall permeation velocities
is used to include the lower and upper limits of ultrafiltration conditions. A wall
permeation velocity of 10 m/s definitely represents reverse osmosis conditions,
while a permeation velocity of 107 m/s is probably under microfiltration
conditions.

For both constant and variable solute viscosity models, the wall permeation
velocity, and hence, the transmembrane flux decreases along the axial direction
for all feed concentrations and initial wall permeation velocities. The general
trend is that, for a given initial wall permeation velocity, the transmembrane flux
decreases rapidly with increasing feed concentrations. In the case of high-
permeability membranes (e.g. v, = 10~ m/s), the decline in transmembrane flux
may take place within a short distance downstream. In the case of low
permeability membranes (e.g., v, = 10° m/s), the transmembrane flux may
remain unaffected at the entrance, but the flux decreases further downstream.

Comparing Figure 1 with Figure 2, it is apparent that the onset of flux decline
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TABLE 1. DIMENSION OF MEMBRANE MODULE AND INPUT DATA

System:
Thin-Channel UF Module
Channel Half-height (h): 0.001 m
Membrane Solute Rejection Coefficient, 3=1.0
Operating Pressure: 5.0 X 10° Pa
Feed: Dextran T-70 Aqueous Solution
Concentration Range: 0.1 wt % - 5.0 wt %
Feed Velocity (uy): 1 m/s
Initial Wall Permeation Velocity (v,o): 10° m/s - 10* m/s

Viscosity Model (17):
u = 0.0009086 [1 + 0.0lc exp(0.08678c + 3.313)]
where p is in Pa-s and ¢ is in wt %

Osmotic Pressure Model (18):
x X 10° = 0.6353¢ + 12.636¢? + 49.55¢°

where 7 is in Pa

along the membrane length takes place earlier in the case of variable viscosity.
For example, with v,, = 10° m/s, and ¢, = 1.0 wt %, the initial transmembrane
flux drops down to 50% at 98 cm distance downstream for the constant viscosity
case, while for the variable viscosity case, this reduction in transmembrane flux
takes place within 27 cm of the entrance. This clearly demonstrates how the
concentration-dependent solute viscosity adversely affects the transmembrane flux
in filtration.

The variation of dimensionless wall solute concentration, C,, = ¢,/c,, along
the distance downstream is shown in Figures 3 and 4 for the constant- and
variable-viscosity models, respectively. The conditions are the same as used in
Figure 1. The significant difference between the constant and variable viscosity
models is again obvious. For a given initial wall permeation velocity, the wall

solute concentration increases along the axial length for all feed concentrations.
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1.0 T T T T
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05 | | i | I
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FIGURE 1. Variation of dimensionless transmembrane flux (wall permeation

velocity) along the axial length of a thin-channel UF module at three feed
concentrations (constant-viscosity model).
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FIGURE 2. Variation of dimensionless transmembrane flux (wall permeation

velocity) along the axial length of a thin-channel UF module at three feed
concentrations (variable-viscosity model).
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FIGURE 3. Variation of dimensionless solute concentration at the membrane

wall along the axial length of a thin-channel UF module at three feed
concentrations (constant-viscosity model).
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FIGURE 4. Variation of dimensionless solute concentration at the membrane

wall along the axial length of a thin-channel UF module at three feed
concentrations (variable-viscosity model).
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At the low initial wall permeation velocity (e.g., v, = 10 m/s), there is
no appreciable difference between the two models and the wall solute
concentration is only two to three times that of the feed solution. For the
constant-viscosity model (Figure 3), for example, at x = 50 cm from the
entrance, the wall concentrations (c,) are 8.5, 1.9, and 0.2 wt % for feed
concentrations of 5, 1, and 0.1 wt %, respectively. For the variable-viscosity
model (Figure 4) at x = 50 c¢m, these concentrations are 9.1, 2.0, and 0.2 wt %
for feed concentrations of 5, 1, and 0.1 wt %, respectively. However, the buildup
of wall solute concentrations is more dramatic in the case of high initial wall
permeation velocities. At high wall permeation velocities, the concentrations build
up rapidly with the loss of permeate. For example, at a wall permeation velocity
of 10° m/s, and at x = 50 c¢m, the constant-viscosity model predicts wall solute
concentrations of 32.6, 26.2, and 7.6 wt % for inlet feed concentrations of 5, 1,
and 0.1 wt %, respectively. For the same conditions, the variable-viscosity model
(Figure 4) predicts wall solute concentrations of 35.8, 31.9, and 12.3 wt %, for
feed concentrations of 5, 1, and 0.1 wt %, respectively.

The decline of transmembrane flux and increase in wall solute concentration
along the axial direction largely depend on the magnitude of initial wall
permeation velocity. At low initial wall permeation velocity (as in reverse
osmosis, vy, < 10° m/s), the difference between the variable- and constant-
viscosity models is not significant. Therefore, the assumption of constant viscosity
in reverse osmosis should be satisfactory (5). However, when the wall permeation
velocities are more typical of ultrafiltration, with loss of permeate, the solute
viscosity becomes a concentration-dependent variable that greatly affects the
buildup of wall solute concentration and transmembrane flux. Under this
condition, a constant-viscosity model will grossly overestimate the transmembrane
flux and, also, underestimate the concentration buildup in a typical ultrafiltration
operation. The concentration polarization is defined as (6):

¢

C,-—* _-1-CA(l1-X)-1 (23)
P l1-X%) ol )
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FIGURE 5. Effect of feed concentration on concentration polarization plotted as
a function of dimensionless parameter, ¢ for the cases of constant- and variable-
viscosity models for Dextran T-70.

where the term, ¢,/(1-X) is the mixing-cup average solute concentration. To be
consistent with other published works (5,14,19), the dimensionless axial distance

(X) or the fraction of water removed at a given value of x is rescaled as:

E - 3£(V_W0

h\ u,

2
V.oh

D,

24

0

The function £ is a dimensionless guantity which includes the effect of the
variable channel height (h), feed velocity (uy), solute diffusivity (D,), and initial
wall permeation velocity (v,e). Thus, a plot in terms of £ is essentially a

multiparameter representation of a large number of other graphs that could be
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drawn to illustrate the effect of a single parameter on the concentration
polarization.

Figure 5 presents the results of concentration polarization, C,, as a function
of dimensionless parameter, £, for both the constant- and variable-viscosity
models. For any value of ¢, C, increases with the fraction of water removed (or
dimensionless longitudinal position) and then levels out at an asymptotic value of
C,. The asymptote corresponds to the distance far downstream. This distance is
approached at relatively low values of water removal when ¢, is large. On the
other hand, at low values of ¢, the asymptotic polarization is approached only as
water removal approaches unity. A close review of Figure 5 indicates that there
is a significant difference between the values of C, obtained assuming the constant

viscosity and variable viscosity, particularly at higher inlet feed concentrations.

CONCLUSIONS

In cross-flow ultrafiltration, concentration-dependent solute viscosity may
play an important role in evaluating the performance of such systems. The present
study analyzed concentration polarization as a coupled transport problem with
concentration-dependent solute viscosity. This provides fundamental information
for the analysis of ultrafiltration systems. The simulation results indicate that
there is a significant difference between the values of wall permeation velocity
(v.) and solute wall concentration (c,) obtained by the constant-viscosity and
variable-viscosity models. The present model can be readily extended to hollow-
fiber and tubular ultrafiltration systems. In any ultrafiltration operation, if the
solution shows a strong dependence of viscosity on concentration, a constant-
viscosity assumption may grossly over estimate the transmembrane flux and

underestimate the effect of concentration polarization.

NOTATIONS

A; coefficient of U;;, of Eq. 8 as defined by Eq. 10

a; constants in Egs. (10-12) and (14-16) as defined by Eq. 18, fori=1,6
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B, coefficient of U;; of Eq. 8 as defined by Eq. 11
C dimensionless solute concentration, c/c,

C,, dimensionless wall solute concentration, ¢,/c,

C, concentration polarization as defined by Eq. 23

¢ solute concentration, wt %

¢, surface solute or gel concentration, wt %

¢, feed concentration at inlet, wt %

D, solute diffusivity, cm?-s?

coefficient of U;;,, of Eq. 8 as defined by Eq. 12
a constant in Eq. 8 as defined by Eq. 13
coefficient of C;;, of Eq. 9 as defined by Eq. 14
G; coefficient of C;; of Eq. 9 as defined by Eq. 15
H; coefficient of C;;,, of Eq. 9 as defined by Eq. 16
IJ

P

J

D
E.
F

md 0

a constant in Eq. 9 as defined by Eq. 17

pressure, Pa
P, pressure on the permeate side, Pa
Ap transmembrane pressure, (p-p,), Pa
AP dimensionless transmembrane pressure, 2(p-p.)/ou’,
Pe,, Peclet number based on initial wall permeation velocity, v,.h/D,
r,, effective membrane resistance, Pa/cm-s’!
R, normalized effective membrane resistance, 2v,qr,/pu%
Re,, wall Reynolds number based initial wall permeation velocity, v,oh/v,
u  axial velocity component in x-direction, cm s
u, average inlet velocity at x=0, cm s
U dimensionless axial velocity, u/u,
v velocity in y-direction, cm +§™!
V.o Initial wall permeation velocity, cm+s™
V  dimensionless transverse velocity, v/v,,
x  axial direction
X  dimensionless axial direction (or fraction of water removed at x), v,ox/uh
AX finite-difference grid spacing in X-direction as defined by Eq. 19
y  transverse direction
Y dimensionless transverse direction, y/h
AY, finite-difference grid spacing in Y-direction as defined by Eq. 19
AY, finite-difference grid spacing in Y-direction as defined by Eq. 19
B solute rejection coefficient at the membrane surface
v kinematic viscosity of solution (u/p), cm?+s’!
v, reference kinematic viscosity of feed at channel inlet (uy/p), cm?-s*
v dimensionless kinematic viscosity (v/)
u  dynamic viscosity of solution, g-cm™ s’
po reference dynamic viscosity of feed at channel inlet, g-cm™-s™
«  osmotic pressure of the solute in solution, Pa
T, osmotic pressure of permeate, Pa
ATl transmembrane osmotic pressure, 2(7-x.)/pu’,
o density of feed solution, kg -m?
¢  dimensionless parameter as defined by Eq. 24
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